Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • RAG-Driven Generative AI
  • Toc
  • feedback
RAG-Driven Generative AI

RAG-Driven Generative AI

By : Denis Rothman
4.3 (18)
close
RAG-Driven Generative AI

RAG-Driven Generative AI

4.3 (18)
By: Denis Rothman

Overview of this book

RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs. This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs. You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.
Table of Contents (14 chapters)
close
11
Other Books You May Enjoy
12
Index
Appendix

Why Retrieval Augmented Generation?

Even the most advanced generative AI models can only generate responses based on the data they have been trained on. They cannot provide accurate answers to questions about information outside their training data. Generative AI models simply don’t know that they don’t know! This leads to inaccurate or inappropriate outputs, sometimes called hallucinations, bias, or, simply said, nonsense.

Retrieval Augmented Generation (RAG) is a framework that addresses this limitation by combining retrieval-based approaches with generative models. It retrieves relevant data from external sources in real time and uses this data to generate more accurate and contextually relevant responses. Generative AI models integrated with RAG retrievers are revolutionizing the field with their unprecedented efficiency and power. One of the key strengths of RAG is its adaptability. It can be seamlessly applied to any type of data, be it text, images, or audio. This versatility makes RAG ecosystems a reliable and efficient tool for enhancing generative AI capabilities.

A project manager, however, already encounters a wide range of generative AI platforms, frameworks, and models such as Hugging Face, Google Vertex AI, OpenAI, LangChain, and more. An additional layer of emerging RAG frameworks and platforms will only add complexity with Pinecone, Chroma, Activeloop, LlamaIndex, and so on. All these Generative AI and RAG frameworks often overlap, creating an incredible number of possible configurations. Finding the right configuration of models and RAG resources for a specific project, therefore, can be challenging for a project manager. There is no silver bullet. The challenge is tremendous, but the rewards, when achieved, are immense!

We will begin this chapter by defining the RAG framework at a high level. Then, we will define the three main RAG configurations: naïve RAG, advanced RAG, and modular RAG. We will also compare RAG and fine-tuning and determine when to use these approaches. RAG can only exist within an ecosystem, and we will design and describe one in this chapter. Data needs to come from somewhere and be processed. Retrieval requires an organized environment to retrieve data, and generative AI models have input constraints.

Finally, we will dive into the practical aspect of this chapter. We will build a Python program from scratch to run entry-level naïve RAG with keyword search and matching. We will also code an advanced RAG system with vector search and index-based retrieval. Finally, we will build a modular RAG that takes both naïve and advanced RAG into account. By the end of this chapter, you will acquire a theoretical understanding of the RAG framework and practical experience in building a RAG-driven generative AI program. This hands-on approach will deepen your understanding and equip you for the following chapters.

In a nutshell, this chapter covers the following topics:

  • Defining the RAG framework
  • The RAG ecosystem
  • Naïve keyword search and match RAG in Python
  • Advanced RAG with vector-search and index-based RAG in Python
  • Building a modular RAG program

Let’s begin by defining RAG.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete