Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Using Stable Diffusion with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Using Stable Diffusion with Python

Using Stable Diffusion with Python

By : Andrew Zhu (Shudong Zhu)
4.8 (5)
close
close
Using Stable Diffusion with Python

Using Stable Diffusion with Python

4.8 (5)
By: Andrew Zhu (Shudong Zhu)

Overview of this book

Stable Diffusion is a game-changing AI tool that enables you to create stunning images with code. The author, a seasoned Microsoft applied data scientist and contributor to the Hugging Face Diffusers library, leverages his 15+ years of experience to help you master Stable Diffusion by understanding the underlying concepts and techniques. You’ll be introduced to Stable Diffusion, grasp the theory behind diffusion models, set up your environment, and generate your first image using diffusers. You'll optimize performance, leverage custom models, and integrate community-shared resources like LoRAs, textual inversion, and ControlNet to enhance your creations. Covering techniques such as face restoration, image upscaling, and image restoration, you’ll focus on unlocking prompt limitations, scheduled prompt parsing, and weighted prompts to create a fully customized and industry-level Stable Diffusion app. This book also looks into real-world applications in medical imaging, remote sensing, and photo enhancement. Finally, you'll gain insights into extracting generation data, ensuring data persistence, and leveraging AI models like BLIP for image description extraction. By the end of this book, you'll be able to use Python to generate and edit images and leverage solutions to build Stable Diffusion apps for your business and users.
Table of Contents (29 chapters)
close
close
Free Chapter
1
Part 1 – A Whirlwind of Stable Diffusion
8
Part 2 – Improving Diffusers with Custom Features
15
Part 3 – Advanced Topics
21
Part 4 – Building Stable Diffusion into an Application

Our evolving relationship with AI

On April 24, 1907, lamplighters in New York City went on strike [6], leaving many streets unlit. Despite complaints from citizens and efforts from policemen, few lamps were successfully lit due to various challenges. This event marked a significant shift toward electric streetlights, which were simpler to maintain and had begun to replace gas lamps since their introduction in the late 19th century.

By 1927, electric streetlights had completely taken over, leading to the disappearance of the lamplighters’ profession and the Lamplighters Union. The electrification process was unstoppable, no matter how unwilling the public and lamplighters were to adopt it.

And AI is the new electric streetlight; it can be creative, it can be fully automated, it can work on one or several things well, and it may surpass human capabilities. Yes, the AI electric streetlights will replace the old gas lights that we are so used to and carefully maintain. So...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY