Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Using Stable Diffusion with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Using Stable Diffusion with Python

Using Stable Diffusion with Python

By : Andrew Zhu (Shudong Zhu)
4.8 (5)
close
close
Using Stable Diffusion with Python

Using Stable Diffusion with Python

4.8 (5)
By: Andrew Zhu (Shudong Zhu)

Overview of this book

Stable Diffusion is a game-changing AI tool that enables you to create stunning images with code. The author, a seasoned Microsoft applied data scientist and contributor to the Hugging Face Diffusers library, leverages his 15+ years of experience to help you master Stable Diffusion by understanding the underlying concepts and techniques. You’ll be introduced to Stable Diffusion, grasp the theory behind diffusion models, set up your environment, and generate your first image using diffusers. You'll optimize performance, leverage custom models, and integrate community-shared resources like LoRAs, textual inversion, and ControlNet to enhance your creations. Covering techniques such as face restoration, image upscaling, and image restoration, you’ll focus on unlocking prompt limitations, scheduled prompt parsing, and weighted prompts to create a fully customized and industry-level Stable Diffusion app. This book also looks into real-world applications in medical imaging, remote sensing, and photo enhancement. Finally, you'll gain insights into extracting generation data, ensuring data persistence, and leveraging AI models like BLIP for image description extraction. By the end of this book, you'll be able to use Python to generate and edit images and leverage solutions to build Stable Diffusion apps for your business and users.
Table of Contents (29 chapters)
close
close
Free Chapter
1
Part 1 – A Whirlwind of Stable Diffusion
8
Part 2 – Improving Diffusers with Custom Features
15
Part 3 – Advanced Topics
21
Part 4 – Building Stable Diffusion into an Application

Generating latent vectors using diffusers

In this section, we are going to use a pre-trained Stable Diffusion model to encode an image into latent space so that we have a concrete impression of what a latent vector looks and feels like. Then, we will decode the latent vector back into an image. This operation will also establish the foundation for building the image-to-image custom pipeline:

  1. Load an image: We can use the load_image function from diffusers to load an image from local storage or a URL. In the following code, we load an image named dog.png from the same directory of the current program:
    from diffusers.utils import load_image
    image = load_image("dog.png")
    display(image)
  2. Pre-process the image: Each pixel of the loaded image is represented by a number ranging from 0 to 255. The image encoder from the Stable Diffusion process handles image data ranging from -1.0 to 1.0. So, we first need to make the data range conversion:
    import numpy as np
    # convert image...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY