Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering NLP from Foundations to LLMs
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering NLP from Foundations to LLMs

Mastering NLP from Foundations to LLMs

By : Gazit, Meysam Ghaffari
4.9 (24)
close
close
Mastering NLP from Foundations to LLMs

Mastering NLP from Foundations to LLMs

4.9 (24)
By: Gazit, Meysam Ghaffari

Overview of this book

Do you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.
Table of Contents (14 chapters)
close
close

Summary

In this chapter, we introduced you to the field of NLP, which is a subfield of AI. The chapter highlights the importance of mathematical foundations, such as linear algebra, statistics and probability, and optimization theory, which are necessary to understand the algorithms used in NLP. It also covers the challenges faced in NLP, such as understanding the context and meaning of words, the relationships between them, and the need for labeled data. We discussed the recent advancements in NLP, including pre-trained language models, such as BERT and GPT, and the availability of large amounts of text data, which has led to improved performance in NLP tasks. We touched on the importance of text preprocessing as you gains knowledge of the importance of data cleaning, data normalization, stemming, and lemmatization in text preprocessing. We then talked about how the coming together of NLP and ML is driving advancements in the field and is becoming an increasingly important tool for automating tasks and improving human-computer interaction.

After learning from this chapter, you will be able to understand the importance of NLP, ML, and DL techniques. you will be able to understand the recent advancements in NLP, including pre-trained language models. you will also have gained knowledge of the importance of text preprocessing and how it plays a crucial role in data preparation for NLP tasks and in data cleaning.

In the next chapter, we will cover the mathematical foundations of ML. These foundations will serve us throughout the book.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY