Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Building Data Science Solutions with Anaconda
  • Toc
  • feedback
Building Data Science Solutions with Anaconda

Building Data Science Solutions with Anaconda

By : Meador
5 (12)
close
Building Data Science Solutions with Anaconda

Building Data Science Solutions with Anaconda

5 (12)
By: Meador

Overview of this book

You might already know that there's a wealth of data science and machine learning resources available on the market, but what you might not know is how much is left out by most of these AI resources. This book not only covers everything you need to know about algorithm families but also ensures that you become an expert in everything, from the critical aspects of avoiding bias in data to model interpretability, which have now become must-have skills. In this book, you'll learn how using Anaconda as the easy button, can give you a complete view of the capabilities of tools such as conda, which includes how to specify new channels to pull in any package you want as well as discovering new open source tools at your disposal. You’ll also get a clear picture of how to evaluate which model to train and identify when they have become unusable due to drift. Finally, you’ll learn about the powerful yet simple techniques that you can use to explain how your model works. By the end of this book, you’ll feel confident using conda and Anaconda Navigator to manage dependencies and gain a thorough understanding of the end-to-end data science workflow.
Table of Contents (16 chapters)
close
1
Part 1: The Data Science Landscape – Open Source to the Rescue
6
Part 2: Data Is the New Oil, Models Are the New Refineries
11
Part 3: Practical Examples and Applications

What this book covers

Chapter 1, Understanding the AI/ML Landscape, provides an overview of the current state of data science as well as what tools you'll need to succeed.

Chapter 2, Analyzing Open Source Software, delves into the role of OSS in data science and how to decide what new OSS tool to use. You'll get a systematic checklist to look for in the next tool you evaluate.

Chapter 3, Using Anaconda Distribution to Manage Packages, covers how to manage packages with conda and Navigator. This includes how to create environments and create channels.

Chapter 4, Working with Jupyter Notebooks and NumPy, covers how to successfully turn notebooks into your daily driver to create data science value. We'll also go deeper into the powerful NumPy library to vastly speed up our operations.

Chapter 5, Cleaning and Visualizing Data, looks at the core techniques you'll need to shape data coming in to prepare it for model training. We'll cover areas such as imputing and also how we can visualize our data to gain a greater understanding.

Chapter 6, Overcoming Bias in AI/ML, looks at the many ways that naive ignorance can be present in our data and what we can do to avoid or correct these issues. You'll see what the real-world impacts are of a biased AI model.

Chapter 7, Choosing the Best AI Algorithm, goes into some of the major problem families that AI/ML models can help with, including regression and anomaly detection. We'll check out the algorithms you can use as well as the comparative rating for each.

Chapter 8, Dealing with Common Data Problems, looks at how you can identify and correct errors in your datasets, such as incorrect data entries. You'll also see how to scale your data and encode categorical features.

Chapter 9, Building a Regression Model with scikit-learn, walks you through a complete flow of building a regression model and how you can evaluate the results.

Chapter 10, Explainable AI – Using LIME and SHAP, goes further into the results of a model to be able to interpret and also explain how a model arrived at the results it did. Models that are interpretable by design and black-box models are covered.

Chapter 11, Tuning Hyperparameters with scikit-learn Pipelines, takes a more holistic approach and shows you how to leverage pipelines to create a flexible and repeatable process for data preparation and model creation. We'll cover how to use these tools to tune your hyperparameters to create a better model.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete