Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning Automation with TPOT
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning Automation with TPOT

Machine Learning Automation with TPOT

By : Radečić
4.6 (7)
close
close
Machine Learning Automation with TPOT

Machine Learning Automation with TPOT

4.6 (7)
By: Radečić

Overview of this book

The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods. With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets. By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level.
Table of Contents (14 chapters)
close
close
1
Section 1: Introducing Machine Learning and the Idea of Automation
3
Section 2: TPOT – Practical Classification and Regression
8
Section 3: Advanced Examples and Neural Networks in TPOT

Introduction to the Dask library

You can think of Dask as one of the most revolutionary Python libraries for data processing at scale. If you are a regular pandas and NumPy user, you'll love Dask. The library allows you to work with data NumPy and pandas doesn't allow because they don't fit into the RAM.

Dask supports both NumPy array and pandas DataFrame data structures, so you'll quickly get up to speed with it. It can run either on your computer or a cluster, making it that much easier to scale. You only need to write the code once and then choose the environment that you'll run it in. It's that simple.

One other thing to note is that Dask allows you to run code in parallel with minimal changes. As you saw earlier, processing things in parallel means the execution time decreases, which is generally the behavior we want. Later, you'll learn how parallelism in Dask works with dask.delayed.

To get started, you'll have to install the...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY