Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning Automation with TPOT
  • Toc
  • feedback
Machine Learning Automation with TPOT

Machine Learning Automation with TPOT

By : Radečić
4.6 (7)
close
Machine Learning Automation with TPOT

Machine Learning Automation with TPOT

4.6 (7)
By: Radečić

Overview of this book

The automation of machine learning tasks allows developers more time to focus on the usability and reactivity of the software powered by machine learning models. TPOT is a Python automated machine learning tool used for optimizing machine learning pipelines using genetic programming. Automating machine learning with TPOT enables individuals and companies to develop production-ready machine learning models cheaper and faster than with traditional methods. With this practical guide to AutoML, developers working with Python on machine learning tasks will be able to put their knowledge to work and become productive quickly. You'll adopt a hands-on approach to learning the implementation of AutoML and associated methodologies. Complete with step-by-step explanations of essential concepts, practical examples, and self-assessment questions, this book will show you how to build automated classification and regression models and compare their performance to custom-built models. As you advance, you'll also develop state-of-the-art models using only a couple of lines of code and see how those models outperform all of your previous models on the same datasets. By the end of this book, you'll have gained the confidence to implement AutoML techniques in your organization on a production level.
Table of Contents (14 chapters)
close
1
Section 1: Introducing Machine Learning and the Idea of Automation
3
Section 2: TPOT – Practical Classification and Regression
8
Section 3: Advanced Examples and Neural Networks in TPOT

Chapter 4: Exploring Classification with TPOT

In this chapter, you'll continue going through hands-on examples of automated machine learning. You will learn how to handle classification tasks with TPOT in an automated manner by going through three complete datasets.

We will cover essential topics such as dataset loading, cleaning, necessary data preparation, and exploratory data analysis. Then, we'll dive deep into classification with TPOT. You will learn how to train and evaluate automated classification models.

Before training models automatically, you will see how good models can be obtained with basic classification algorithms, such as logistic regression. This model will serve as the baseline that TPOT needs to outperform.

This chapter will cover the following topics:

  • Applying automated classification modeling to the Iris dataset
  • Applying automated classification modeling to the Titanic dataset
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete