Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Automated Machine Learning
  • Toc
  • feedback
Automated Machine Learning

Automated Machine Learning

By : Adnan Masood
4.5 (15)
close
Automated Machine Learning

Automated Machine Learning

4.5 (15)
By: Adnan Masood

Overview of this book

Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
Table of Contents (15 chapters)
close
1
Section 1: Introduction to Automated Machine Learning
5
Section 2: AutoML with Cloud Platforms
12
Section 3: Applied Automated Machine Learning

Introducing Featuretools

Featuretools is an excellent Python framework that helps with automated feature engineering by using DFS. Feature engineering is a tough problem due to its very nuanced nature. However, this open source toolkit, with its robust timestamp handling and reusable feature primitives, provides a proper framework for us to build and extract combinations of features and their impact.

The toolkit is available on GitHub to be downloaded: https://github.com/FeatureLabs/featuretools/. The following steps will guide you through how to install Featuretools, as well as how to run an automated ML experiment using the library. Let's get started:

  1. To start Featuretools in Colab, you will need to use pip to install the package. In this example, we will try to create features for the Boston Housing Prices dataset:

    Figure 3.19 – AutoML with Featuretools – installing Featuretools

    In this experiment, we will be using the Boston Housing Prices dataset...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete