Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Automated Machine Learning
  • Table Of Contents Toc
  • Feedback & Rating feedback
Automated Machine Learning

Automated Machine Learning

By : Adnan Masood
4.5 (15)
close
close
Automated Machine Learning

Automated Machine Learning

4.5 (15)
By: Adnan Masood

Overview of this book

Every machine learning engineer deals with systems that have hyperparameters, and the most basic task in automated machine learning (AutoML) is to automatically set these hyperparameters to optimize performance. The latest deep neural networks have a wide range of hyperparameters for their architecture, regularization, and optimization, which can be customized effectively to save time and effort. This book reviews the underlying techniques of automated feature engineering, model and hyperparameter tuning, gradient-based approaches, and much more. You'll discover different ways of implementing these techniques in open source tools and then learn to use enterprise tools for implementing AutoML in three major cloud service providers: Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform. As you progress, you’ll explore the features of cloud AutoML platforms by building machine learning models using AutoML. The book will also show you how to develop accurate models by automating time-consuming and repetitive tasks in the machine learning development lifecycle. By the end of this machine learning book, you’ll be able to build and deploy AutoML models that are not only accurate, but also increase productivity, allow interoperability, and minimize feature engineering tasks.
Table of Contents (15 chapters)
close
close
1
Section 1: Introduction to Automated Machine Learning
5
Section 2: AutoML with Cloud Platforms
12
Section 3: Applied Automated Machine Learning

Summary

Today, the success of ML within an enterprise largely depends on human ML experts who can construct business-specific features and workflows. Automated ML aims to change this, as it aims to automate ML so as to provide off-the-shelf ML methods that can be utilized without expert knowledge. To understand how automated ML works, we need to review the underlying four subfields, or pillars, of automated ML: hyperparameter optimization; automated feature engineering; neural architecture search; and meta-learning.

In this chapter, we explained what is under the hood in terms of the technologies, techniques, and tools used to make automated ML possible. We hope that this chapter has introduced you to automated ML techniques and that you are now ready to do a deeper dive into the implementation phase.

In the next chapter, we will review the open source tools and libraries that implement these algorithms to get a hands-on overview of how to use these concepts in practice, so...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY