Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Automated Machine Learning with Microsoft Azure
  • Toc
  • feedback
Automated Machine Learning with Microsoft Azure

Automated Machine Learning with Microsoft Azure

By : Dennis Michael Sawyers , Dennis Sawyers
4.9 (18)
close
Automated Machine Learning with Microsoft Azure

Automated Machine Learning with Microsoft Azure

4.9 (18)
By: Dennis Michael Sawyers , Dennis Sawyers

Overview of this book

Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect.
Table of Contents (17 chapters)
close
1
Section 1: AutoML Explained – Why, What, and How
5
Section 2: AutoML for Regression, Classification, and Forecasting – A Step-by-Step Guide
10
Section 3: AutoML in Production – Automating Real-Time and Batch Scoring Solutions

Triggering and scheduling your ML pipelines

One of the biggest problems data scientists face is creating easy, rerunnable, production-ready code and scheduling it in an automatic, reliable manner. You've already accomplished the first part by creating your three ML pipelines. Now, it's time to learn how to do the second part.

In this section, you will first learn how to manually trigger the pipelines you've created through the GUI. Then, you will learn how to trigger the pipelines via code, both manually and on an automated schedule. This will enable you to put your ML pipelines into production, generating results on an hourly, daily, weekly, or monthly basis.

Triggering your published pipeline from the GUI

Triggering your published pipeline from the AML studio GUI is easy. However, you cannot set up an automated schedule for your ML pipelines at this time. As such, it is most useful for triggering training pipelines when you notice that your results seem off...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete