Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Data Engineering with AWS
  • Table Of Contents Toc
  • Feedback & Rating feedback
Data Engineering with AWS

Data Engineering with AWS

By : Eagar
4.7 (24)
close
close
Data Engineering with AWS

Data Engineering with AWS

4.7 (24)
By: Eagar

Overview of this book

Written by a Senior Data Architect with over twenty-five years of experience in the business, Data Engineering for AWS is a book whose sole aim is to make you proficient in using the AWS ecosystem. Using a thorough and hands-on approach to data, this book will give aspiring and new data engineers a solid theoretical and practical foundation to succeed with AWS. As you progress, you’ll be taken through the services and the skills you need to architect and implement data pipelines on AWS. You'll begin by reviewing important data engineering concepts and some of the core AWS services that form a part of the data engineer's toolkit. You'll then architect a data pipeline, review raw data sources, transform the data, and learn how the transformed data is used by various data consumers. You’ll also learn about populating data marts and data warehouses along with how a data lakehouse fits into the picture. Later, you'll be introduced to AWS tools for analyzing data, including those for ad-hoc SQL queries and creating visualizations. In the final chapters, you'll understand how the power of machine learning and artificial intelligence can be used to draw new insights from data. By the end of this AWS book, you'll be able to carry out data engineering tasks and implement a data pipeline on AWS independently.
Table of Contents (19 chapters)
close
close
1
Section 1: AWS Data Engineering Concepts and Trends
6
Section 2: Architecting and Implementing Data Lakes and Data Lake Houses
13
Section 3: The Bigger Picture: Data Analytics, Data Visualization, and Machine Learning

Summary

In this chapter, we reviewed important concepts around data security and governance, including how a data catalog can be used to help prevent your data lake from becoming a data swamp.

Data encryption at rest and in transit, and tokenization of PII data, are important concepts for a data engineer to understand to protect data in the data lake, and a service such as AWS Lake Formation is a useful tool for easily managing authorization for datasets.

In the next chapter, we will take a step back and look at the bigger picture of how a data engineer can architect a data pipeline. We will begin exploring how to understand the needs of our data consumers, learn more about our data sources, and decide on the transformations that are required to transform raw data into useful data for analytics.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY