Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Python Machine Learning by Example
  • Toc
  • feedback
Python Machine Learning by Example

Python Machine Learning by Example

By : Yuxi (Hayden) Liu
4 (20)
close
Python Machine Learning by Example

Python Machine Learning by Example

4 (20)
By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
close
15
Other Books You May Enjoy
16
Index

Converting categorical features to numerical – one-hot encoding and ordinal encoding

In Chapter 4Predicting Online Ad Click-Through with Tree-Based Algorithms, I mentioned how one-hot encoding transforms categorical features to numerical features in order to use them in the tree algorithms in scikit-learn and TensorFlow. If we transform categorical features into numerical ones using one-hot encoding, we don't limit our choice of algorithms to the tree-based ones that can work with categorical features.

The simplest solution we can think of in terms of transforming a categorical feature with k possible values is to map it to a numerical feature with values from 1 to k. For example, [Tech, Fashion, Fashion, Sports, Tech, Tech, Sports] becomes [1, 2, 2, 3, 1, 1, 3]. However, this will impose an ordinal characteristic, such as Sports being greater than Tech, and a distance property,...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete