Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Machine Learning by Example
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Machine Learning by Example

Python Machine Learning by Example

By : Yuxi (Hayden) Liu
4 (20)
close
close
Python Machine Learning by Example

Python Machine Learning by Example

4 (20)
By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
close
close
15
Other Books You May Enjoy
16
Index

Tuning models with cross-validation

We can simply avoid adopting the classification results from one fixed testing set, which we did in experiments previously. Instead, we usually apply the k-fold cross-validation technique to assess how a model will generally perform in practice.

In the k-fold cross-validation setting, the original data is first randomly divided into k equal-sized subsets, in which class proportion is often preserved. Each of these k subsets is then successively retained as the testing set for evaluating the model. During each trial, the rest of the k -1 subsets (excluding the one-fold holdout) form the training set for driving the model. Finally, the average performance across all k trials is calculated to generate an overall result:

Figure 2.9: Diagram of 3-fold cross-validation

Statistically, the averaged performance of k-fold cross-validation is a better estimate of how a model performs in general. Given...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY