Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying The Pandas Workshop
  • Table Of Contents Toc
  • Feedback & Rating feedback
The Pandas Workshop

The Pandas Workshop

By : Blaine Bateman, Saikat Basak , Thomas Joseph, William So
4.8 (16)
close
close
The Pandas Workshop

The Pandas Workshop

4.8 (16)
By: Blaine Bateman, Saikat Basak , Thomas Joseph, William So

Overview of this book

The Pandas Workshop will teach you how to be more productive with data and generate real business insights to inform your decision-making. You will be guided through real-world data science problems and shown how to apply key techniques in the context of realistic examples and exercises. Engaging activities will then challenge you to apply your new skills in a way that prepares you for real data science projects. You’ll see how experienced data scientists tackle a wide range of problems using data analysis with pandas. Unlike other Python books, which focus on theory and spend too long on dry, technical explanations, this workshop is designed to quickly get you to write clean code and build your understanding through hands-on practice. As you work through this Python pandas book, you’ll tackle various real-world scenarios, such as using an air quality dataset to understand the pattern of nitrogen dioxide emissions in a city, as well as analyzing transportation data to improve bus transportation services. By the end of this data analytics book, you’ll have the knowledge, skills, and confidence you need to solve your own challenging data science problems with pandas.
Table of Contents (21 chapters)
close
close
1
Part 1 – Introduction to pandas
6
Part 2 – Working with Data
11
Part 3 – Data Modeling
15
Part 4 – Additional Use Cases for pandas

Missing data types

While working with real-world datasets, you are bound to encounter missing data quite frequently during data analysis. Understanding how pandas displays missing data for each dtype is crucial to ensure that your data analysis is correct.

The missing alphabet soup

In the previous section, we learned about the different data types and how to convert them if needed. Here, we will learn about how to represent missing data for each data type.

We will continue with our previous example. However, this time, we will replace some values with None, as follows:

data_frame.drop(['year','month','day'], axis = 1, inplace=True)
data_frame.iloc[0,0] = None
data_frame.iloc[4,1] = None
data_frame.iloc[2,2] = None
data_frame.iloc[3,3] = None
data_frame.iloc[3,4] = None
data_frame.iloc[1,5] = None
data_frame.iloc[2,6] = None
data_frame

Upon running this snippet, you should see the following output:

Figure 4.27 –...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY