Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Interpretable Machine Learning with Python
  • Toc
  • feedback
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

By : Serg Masís
4.7 (26)
close
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

4.7 (26)
By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
close
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

The mission

Imagine you are an analyst for a national health ministry, and there's a Cardiovascular Diseases (CVDs) epidemic. The minister has made it a priority to reverse the growth and reduce the case load to a 20-year low. To this end, a task force has been created to find clues in the data to ascertain the following:

  1. What risk factors can be addressed.
  2. If future cases can be predicted, interpret predictions on a case-by-case basis.

You are part of this task force!

Details about CVD

Before we dive into the data, we must gather some important details about CVD in order to do the following:

  • Understand the problem's context and relevance.
  • Extract domain knowledge information that can inform our data analysis and model interpretation.
  • Relate an expert-informed background to a dataset's features.

CVDs are a group of disorders, the most common of which is coronary heart disease (also known as Ischaemic Heart Disease)....

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete