Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Interpretable Machine Learning with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

By : Serg Masís
4.7 (26)
close
close
Interpretable Machine Learning with Python

Interpretable Machine Learning with Python

4.7 (26)
By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
close
close
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Mitigating bias

We can mitigate bias at three different levels with methods that operate at these individual levels:

  • Preprocessing: These are interventions to detect and remove bias from the training data before training the model. Methods that leverage preprocessing have the advantage that they tackle bias at the source. On the other hand, any undetected bias is still amplified by the model.
  • In-processing: These methods mitigate bias during the model training and are, therefore, highly dependent on the model and tend to not be model-agnostic like the preprocessing and post-processing methods. They also require hyperparameter tuning to calibrate fairness metrics.
  • Post-processing: These methods mitigate bias during model inference. In Chapter 7, Anchors and Counterfactual Explanations, we touched on the subject of using the What-If tool to choose the right thresholds (see Figure 7.14 in that chapter), and we manually adjusted them to achieve parity with false positives...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY