Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying R Machine Learning Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
R Machine Learning Projects

R Machine Learning Projects

By : Dr. Sunil Kumar Chinnamgari
1 (1)
close
close
R Machine Learning Projects

R Machine Learning Projects

1 (1)
By: Dr. Sunil Kumar Chinnamgari

Overview of this book

R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations.
Table of Contents (12 chapters)
close
close
10
The Road Ahead

Exploring the Machine Learning Landscape

Machine learning (ML) is an amazing subfield of Artificial Intelligence (AI) that tries to mimic the learning behavior of humans. Similar to the way a baby learns by observing the examples it encounters, an ML algorithm learns the outcome or response to a future incident by observing the data points that are provided as input to it.

In this chapter, we will cover the following topics:

  • ML versus software engineering
  • Types of ML methods
  • ML terminology—a quick review
  • ML project pipeline
  • Learning paradigm
  • Datasets

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY