Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Exploratory Data Analysis with R
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

By : Radhika Datar, Harish Garg
2.3 (3)
close
close
Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

2.3 (3)
By: Radhika Datar, Harish Garg

Overview of this book

Hands-On Exploratory Data Analysis with R will help you build a strong foundation in data analysis and get well-versed with elementary ways to analyze data. You will learn how to understand your data and summarize its characteristics. You'll also study the structure of your data, and you'll explore graphical and numerical techniques using the R language. This book covers the entire exploratory data analysis (EDA) process—data collection, generating statistics, distribution, and invalidating the hypothesis. As you progress through the book, you will set up a data analysis environment with tools such as ggplot2, knitr, and R Markdown, using DOE Scatter Plot and SML2010 for multifactor, optimization, and regression data problems. By the end of this book, you will be able to successfully carry out a preliminary investigation on any dataset, uncover hidden insights, and present your results in a business context.
Table of Contents (17 chapters)
close
close
Free Chapter
1
Section 1: Setting Up Data Analysis Environment
7
Section 2: Univariate, Time Series, and Multivariate Data
11
Section 3: Multifactor, Optimization, and Regression Data Problems
14
Section 4: Conclusions

Cleaning the dataset

Data cleaning is the process of converting the raw data into a specific format that includes consistent data designed in a simpler manner. R includes a set of comprehensive tools, that are designed specially to clean the data in an effective manner. We will try to focus on cleaning the dataset here in a specific way and will carry out the following steps to this end:

  1. Include the libraries that are needed to clean and tidy up the dataset as follows:
> library(dplyr)
> library(tidyr)
  1. Analyze the summary of our dataset as shown in the following code. This will help us to focus on which attributes are important:
>  summary(Autompg)
mpg cylinders displacement horsepower weight acceleration

Min. : 9.00 Min. :3.000 Min. : 68.0 150 : 22 Min. :1613 Min. : 8.00

1st Qu.:17.50 1st Qu.:4.000 1st Qu.:104.2 90 : 20 1st Qu.:2224...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY