Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Data Mining Quick Start Guide
  • Table Of Contents Toc
  • Feedback & Rating feedback
Python Data Mining Quick Start Guide

Python Data Mining Quick Start Guide

By : Greeneltch
5 (10)
close
close
Python Data Mining Quick Start Guide

Python Data Mining Quick Start Guide

5 (10)
By: Greeneltch

Overview of this book

Data mining is a necessary and predictable response to the dawn of the information age. It is typically defined as the pattern and/ or trend discovery phase in the data mining pipeline, and Python is a popular tool for performing these tasks as it offers a wide variety of tools for data mining. This book will serve as a quick introduction to the concept of data mining and putting it to practical use with the help of popular Python packages and libraries. You will get a hands-on demonstration of working with different real-world datasets and extracting useful insights from them using popular Python libraries such as NumPy, pandas, scikit-learn, and matplotlib. You will then learn the different stages of data mining such as data loading, cleaning, analysis, and visualization. You will also get a full conceptual description of popular data transformation, clustering, and classification techniques. By the end of this book, you will be able to build an efficient data mining pipeline using Python without any hassle.
Table of Contents (9 chapters)
close
close

Introducing prediction concepts

Predicting the output value (that is, regression) or label (that is, classification) on future unseen data is a common final step in data mining projects.

Before reading the rest of this chapter, please be sure to digest the prerequisite concepts introduced in the Basic data terminology and Basic summary statistics sections in Chapter 2, Basic Terminology and Our End-to-End Example. In particular, the content on data types, variable types, and prediction metrics will be assumed as having been pre-learned throughout the entirety of the chapter.

The main strategy is to collect a training set and build a mapping function (that is, fit a model) from the input variables (X) to the output variable (y). Let's collect our assumptions before moving on:

  • (Assumption) There is a relationship between X and y, namely that X are independent variables and...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY