Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Neural Networks with TensorFlow 2.0
  • Toc
  • feedback
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

By : Galeone
3.7 (7)
close
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

3.7 (7)
By: Galeone

Overview of this book

TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
Table of Contents (15 chapters)
close
Free Chapter
1
Section 1: Neural Network Fundamentals
4
Section 2: TensorFlow Fundamentals
8
Section 3: The Application of Neural Networks

The Keras framework and its models

In contrast to what people who already familiar with Keras usually think, Keras is not a high-level wrapper around a machine learning framework (TensorFlow, CNTK, or Theano); instead, it is an API specification that's used for defining and training machine learning models.

TensorFlow implements the specification in its tf.keras module. In particular, TensorFlow 2.0 itself is an implementation of the specification and as such, many first-level submodules are nothing but aliases of the tf.keras submodules; for example, tf.metrics = tf.keras.metrics and tf.optimizers = tf.keras.optimizers.

TensorFlow 2.0 has, by far, the most complete implementation of the specification, making it the framework of choice for the vast majority of machine learning researchers. Any Keras API implementation allows you to build and train deep learning models. It...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete