Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Neural Networks with TensorFlow 2.0
  • Toc
  • feedback
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

By : Galeone
3.7 (7)
close
Hands-On Neural Networks with TensorFlow 2.0

Hands-On Neural Networks with TensorFlow 2.0

3.7 (7)
By: Galeone

Overview of this book

TensorFlow, the most popular and widely used machine learning framework, has made it possible for almost anyone to develop machine learning solutions with ease. With TensorFlow (TF) 2.0, you'll explore a revamped framework structure, offering a wide variety of new features aimed at improving productivity and ease of use for developers. This book covers machine learning with a focus on developing neural network-based solutions. You'll start by getting familiar with the concepts and techniques required to build solutions to deep learning problems. As you advance, you’ll learn how to create classifiers, build object detection and semantic segmentation networks, train generative models, and speed up the development process using TF 2.0 tools such as TensorFlow Datasets and TensorFlow Hub. By the end of this TensorFlow book, you'll be ready to solve any machine learning problem by developing solutions using TF 2.0 and putting them into production.
Table of Contents (15 chapters)
close
Free Chapter
1
Section 1: Neural Network Fundamentals
4
Section 2: TensorFlow Fundamentals
8
Section 3: The Application of Neural Networks

The importance of the dataset

Since the concept of the dataset is essential in ML, let's look at it in detail, with a focus on how to create the required splits for building a complete and correct ML pipeline.

A dataset is nothing more than a collection of data. Formally, we can describe a dataset as a set of pairs, , where is the i-th example and is its label, with a finite cardinality, :

A dataset has a finite number of elements, and our ML algorithm will loop over this dataset several times, trying to understand the data structure, until it solves the task it is asked to address. As shown in Chapter 2, Neural Networks and Deep Learning, some algorithms will consider all the data at once, while other algorithms will iteratively look at a small subset of the data at each training iteration.

A typical supervised learning task is the classification of the dataset. We train...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete