Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Analysis with Pandas
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas

By : Stefanie Molin
4.7 (11)
close
close
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas

4.7 (11)
By: Stefanie Molin

Overview of this book

Data analysis has become a necessary skill in a variety of domains where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will be able to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.
Table of Contents (21 chapters)
close
close
Free Chapter
1
Section 1: Getting Started with Pandas
4
Section 2: Using Pandas for Data Analysis
9
Section 3: Applications - Real-World Analyses Using Pandas
12
Section 4: Introduction to Machine Learning with Scikit-Learn
16
Section 5: Additional Resources
18
Solutions

Adding and removing data

Often, we want to add or remove rows and columns from our data. In the previous sections, we frequently selected a subset of the columns, but if columns/rows aren't useful to us, we should just get rid of them. We also frequently selected data based on the value of the magnitude; however, if we had made a new column holding the Boolean values for later selection, we would have only needed to calculate the mask once. Very rarely will we get data where we neither want to add nor remove something.

Before we get started, it's important to understand that while most methods will return a new DataFrame object, some will be in-place and change our data. If we write a function where we pass in a dataframe and change it, it will change our original dataframe as well. Should we find ourselves in a situation where we don't want to change the original...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY