Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Data Analysis with Pandas
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas

By : Stefanie Molin
4.7 (11)
close
close
Hands-On Data Analysis with Pandas

Hands-On Data Analysis with Pandas

4.7 (11)
By: Stefanie Molin

Overview of this book

Data analysis has become a necessary skill in a variety of domains where knowing how to work with data and extract insights can generate significant value. Hands-On Data Analysis with Pandas will show you how to analyze your data, get started with machine learning, and work effectively with Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the powerful pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will be able to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. By the end of this book, you will be equipped with the skills you need to use pandas to ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.
Table of Contents (21 chapters)
close
close
Free Chapter
1
Section 1: Getting Started with Pandas
4
Section 2: Using Pandas for Data Analysis
9
Section 3: Applications - Real-World Analyses Using Pandas
12
Section 4: Introduction to Machine Learning with Scikit-Learn
16
Section 5: Additional Resources
18
Solutions

Exploratory data analysis

As we have learned throughout this book, our first step should be to engage in some exploratory data analysis (EDA) to get familiar with our data. In the interest of brevity, this section will include a subset of the EDA that's available in each of the notebooks—be sure to check out the respective notebooks for the full version.

Let's start with our imports, which will be the same across the notebooks we will use in this chapter:

>>> %matplotlib inline
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> import pandas as pd
>>> import seaborn as sns

Red wine quality data

Let's read in our red wine data and do some EDA using techniques...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY