Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning for Cybersecurity Cookbook
  • Toc
  • feedback
Machine Learning for Cybersecurity Cookbook

Machine Learning for Cybersecurity Cookbook

By : Emmanuel Tsukerman
3 (2)
close
Machine Learning for Cybersecurity Cookbook

Machine Learning for Cybersecurity Cookbook

3 (2)
By: Emmanuel Tsukerman

Overview of this book

Organizations today face a major threat in terms of cybersecurity, from malicious URLs to credential reuse, and having robust security systems can make all the difference. With this book, you'll learn how to use Python libraries such as TensorFlow and scikit-learn to implement the latest artificial intelligence (AI) techniques and handle challenges faced by cybersecurity researchers. You'll begin by exploring various machine learning (ML) techniques and tips for setting up a secure lab environment. Next, you'll implement key ML algorithms such as clustering, gradient boosting, random forest, and XGBoost. The book will guide you through constructing classifiers and features for malware, which you'll train and test on real samples. As you progress, you'll build self-learning, reliant systems to handle cybersecurity tasks such as identifying malicious URLs, spam email detection, intrusion detection, network protection, and tracking user and process behavior. Later, you'll apply generative adversarial networks (GANs) and autoencoders to advanced security tasks. Finally, you'll delve into secure and private AI to protect the privacy rights of consumers using your ML models. By the end of this book, you'll have the skills you need to tackle real-world problems faced in the cybersecurity domain using a recipe-based approach.
Table of Contents (11 chapters)
close

Malware static analysis

In static analysis, we examine a sample without executing it. The amount of information that can be obtained this way is large, ranging from something as simple as the name of the file to the more complex, such as specialized YARA signatures. We will be covering a selection of the large variety of features you could obtain by statically analyzing a sample. Despite its power and convenience, static analysis is no silver bullet, mainly because software can be obfuscated. For this reason, we will be employing dynamic analysis and other techniques in later chapters.

Computing the hash of a sample

Without delving into the intricacies of hashing, a hash is essentially a short and unique string signature....

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete