Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter
  • Toc
  • feedback
Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

By : Anubhav Singh, Bhadani
1 (1)
close
Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

Mobile Deep Learning with TensorFlow Lite, ML Kit and Flutter

1 (1)
By: Anubhav Singh, Bhadani

Overview of this book

Deep learning is rapidly becoming the most popular topic in the mobile app industry. This book introduces trending deep learning concepts and their use cases with an industrial and application-focused approach. You will cover a range of projects covering tasks such as mobile vision, facial recognition, smart artificial intelligence assistant, augmented reality, and more. With the help of eight projects, you will learn how to integrate deep learning processes into mobile platforms, iOS, and Android. This will help you to transform deep learning features into robust mobile apps efficiently. You’ll get hands-on experience of selecting the right deep learning architectures and optimizing mobile deep learning models while following an application oriented-approach to deep learning on native mobile apps. We will later cover various pre-trained and custom-built deep learning model-based APIs such as machine learning (ML) Kit through Firebase. Further on, the book will take you through examples of creating custom deep learning models with TensorFlow Lite. Each project will demonstrate how to integrate deep learning libraries into your mobile apps, right from preparing the model through to deployment. By the end of this book, you’ll have mastered the skills to build and deploy deep learning mobile applications on both iOS and Android.
Table of Contents (13 chapters)
close

Summary

In this chapter, we covered how we can use image processing using a popular deep-learning-based API service. We also discussed how we can apply the same with a custom trained model, by extending a previously created base model. While we did not explicitly mention it, the extension of the base model was a part of the process termed transfer learning (TL), where models trained on a certain dataset are imported into and used in a completely different scenario, with little or minimal fine-tuning.

Furthermore, the chapter covered why and when TensorFlow Lite is a good candidate for building a model, and how Flutter can be used for applying the same on the device model, which runs offline and is very fast. This chapter sets a milestone, with the introduction of Python and TensorFlow into the project, both of which will be used extensively in the upcoming chapters.

In the...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete