Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Mastering OpenCV 4
  • Table Of Contents Toc
  • Feedback & Rating feedback
Mastering OpenCV 4

Mastering OpenCV 4

By : Roy Shilkrot, Millán Escrivá
2.7 (3)
close
close
Mastering OpenCV 4

Mastering OpenCV 4

2.7 (3)
By: Roy Shilkrot, Millán Escrivá

Overview of this book

Mastering OpenCV, now in its third edition, targets computer vision engineers taking their first steps toward mastering OpenCV. Keeping the mathematical formulations to a solid but bare minimum, the book delivers complete projects from ideation to running code, targeting current hot topics in computer vision such as face recognition, landmark detection and pose estimation, and number recognition with deep convolutional networks. You’ll learn from experienced OpenCV experts how to implement computer vision products and projects both in academia and industry in a comfortable package. You’ll get acquainted with API functionality and gain insights into design choices in a complete computer vision project. You’ll also go beyond the basics of computer vision to implement solutions for complex image processing projects. By the end of the book, you will have created various working prototypes with the help of projects in the book and be well versed with the new features of OpenCV4.
Table of Contents (12 chapters)
close
close

Plate detection

In this step, we have to detect all the plates in a current camera frame. To do this task, we divide it in to two main steps: segmentation and segment classification. The feature step is not explained because we use the image patch as a vector feature.

In the first step (segmentation), we will apply different filters, morphological operations, contour algorithms, and validations to retrieve parts of the image that could contain a plate.

In the second step (classification), we will apply an SVM classifier to each image patch, our feature. Before creating our main application, we will train with two different classes: plate and non-plate. We will work with parallel frontal view color images with 800 pixels of width and that are taken between two and four meters from a car. These requirements are important for correct segmentation. We can perform detection if we create...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY