OpenCV comes with a class called cv2.HOGDescriptor, which is capable of performing people detection. The interface has some similarities to the cv2.CascadeClassifier class that we used in Chapter 5, Detecting and Recognizing Faces. However, unlike cv2.CascadeClassifier, cv2.HOGDescriptor sometimes returns nested detection rectangles. In other words, cv2.HOGDescriptor might tell us that it detected one person whose bounding rectangle is located completely inside another person's bounding rectangle. This situation really is possible; for example, a child could be standing in front of an adult, and the child's bounding rectangle could be completely inside the adult's bounding rectangle. However, in a typical situation, nested detections are probably errors, so cv2.HOGDescriptor is often used along with code to filter out any nested...
-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Learning OpenCV 4 Computer Vision with Python 3
By :

Learning OpenCV 4 Computer Vision with Python 3
By:
Overview of this book
Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You’ll be able to put theory into practice by building apps with OpenCV 4 and Python 3.
You’ll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you’ll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you’ll have opportunities for hands-on activities. Next, you’ll tackle two popular challenges: face detection and face recognition. You’ll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you’ll develop your skills in 3D tracking and augmented reality. Finally, you’ll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age.
By the end of this book, you’ll have the skills you need to execute real-world computer vision projects.
Table of Contents (13 chapters)
Preface
Setting Up OpenCV
Handling Files, Cameras, and GUIs
Processing Images with OpenCV
Depth Estimation and Segmentation
Detecting and Recognizing Faces
Retrieving Images and Searching Using Image Descriptors
Building Custom Object Detectors
Tracking Objects
Camera Models and Augmented Reality
Introduction to Neural Networks with OpenCV
Other Book You May Enjoy
Appendix A: Bending Color Space with the Curves Filter
Customer Reviews