Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Learning OpenCV 4 Computer Vision with Python 3
  • Toc
  • feedback
Learning OpenCV 4 Computer Vision with Python 3

Learning OpenCV 4 Computer Vision with Python 3

By : Joseph Howse, Joe Minichino
4.1 (14)
close
Learning OpenCV 4 Computer Vision with Python 3

Learning OpenCV 4 Computer Vision with Python 3

4.1 (14)
By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science, encompassing diverse applications and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You’ll be able to put theory into practice by building apps with OpenCV 4 and Python 3. You’ll start by understanding OpenCV 4 and how to set it up with Python 3 on various platforms. Next, you’ll learn how to perform basic operations such as reading, writing, manipulating, and displaying still images, videos, and camera feeds. From taking you through image processing, video analysis, and depth estimation and segmentation, to helping you gain practice by building a GUI app, this book ensures you’ll have opportunities for hands-on activities. Next, you’ll tackle two popular challenges: face detection and face recognition. You’ll also learn about object classification and machine learning concepts, which will enable you to create and use object detectors and classifiers, and even track objects in movies or video camera feed. Later, you’ll develop your skills in 3D tracking and augmented reality. Finally, you’ll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age. By the end of this book, you’ll have the skills you need to execute real-world computer vision projects.
Table of Contents (13 chapters)
close

Summary

In this chapter, we learned how to analyze simple spatial relationships within images so that we can differentiate between multiple objects, or between a foreground and a background. Our techniques included extraction of three-dimensional information from a two-dimensional input (a video frame or an image). First, we examined depth cameras, and then epipolar geometry and stereo images, so we are now able to calculate disparity maps. Finally, we looked at image segmentation with two of the most popular methods: GrabCut and Watershed.

As we progress through this book, we will continue to extract increasingly complex information from images. Next, we are ready to explore OpenCV's functionality for detection and recognition of faces and other objects.

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete