Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Machine Learning for Algorithmic Trading
  • Toc
  • feedback
Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

By : Yau, Stefan Jansen
4.1 (20)
close
Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

4.1 (20)
By: Yau, Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You’ll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.
Table of Contents (23 chapters)
close

Summary

In this chapter, we introduced the challenge of learning from data and looked at supervised, unsupervised, and reinforcement models as the principal forms of learning that we will study in this book to build algorithmic trading strategies. We discussed the need for supervised learning algorithms to make assumptions about the functional relationships that they attempt to learn in order to limit the search space while incurring an inductive bias that may lead to excessive generalization errors.

We presented key aspects of the ML workflow, introduced the most common error metrics for regression and classification models, explained the bias-variance trade-off, and illustrated the various tools for managing the model selection process using cross-validation.

In the following chapter, we will dive into linear models for regression and classification to develop our first algorithmic...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete