Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Machine Learning for Algorithmic Trading
  • Toc
  • feedback
Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

By : Yau, Stefan Jansen
4.1 (20)
close
Hands-On Machine Learning for Algorithmic Trading

Hands-On Machine Learning for Algorithmic Trading

4.1 (20)
By: Yau, Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You’ll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym.
Table of Contents (23 chapters)
close

Word Embeddings

In the two previous chapters, we applied the bag-of-words model to convert text data into a numerical format. The results were sparse, fixed-length vectors that represent documents in a high-dimensional word space. This allows evaluating the similarity of documents and creates features to train a machine learning algorithm and classify a document's content or rate the sentiment expressed in it. However, these vectors ignore the context in which a term is used so that, for example, a different sentence containing the same words would be encoded by the same vector.

In this chapter, we will introduce an alternative class of algorithms that use neural networks to learn a vector representation of individual semantic units such as a word or a paragraph. These vectors are dense rather than sparse, and have a few hundred real-valued rather than tens of thousands of...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete