Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning with Scala Quick Start Guide
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning with Scala Quick Start Guide

Machine Learning with Scala Quick Start Guide

By : Karim, Kumar N
close
close
Machine Learning with Scala Quick Start Guide

Machine Learning with Scala Quick Start Guide

By: Karim, Kumar N

Overview of this book

Scala is a highly scalable integration of object-oriented nature and functional programming concepts that make it easy to build scalable and complex big data applications. This book is a handy guide for machine learning developers and data scientists who want to develop and train effective machine learning models in Scala. The book starts with an introduction to machine learning, while covering deep learning and machine learning basics. It then explains how to use Scala-based ML libraries to solve classification and regression problems using linear regression, generalized linear regression, logistic regression, support vector machine, and Naïve Bayes algorithms. It also covers tree-based ensemble techniques for solving both classification and regression problems. Moving ahead, it covers unsupervised learning techniques, such as dimensionality reduction, clustering, and recommender systems. Finally, it provides a brief overview of deep learning using a real-life example in Scala.
Table of Contents (9 chapters)
close
close

Hyperparameter tuning and cross-validation

In machine learning, the term hyperparameter refers to those parameters that cannot be learned from the regular training process directly. These are the various knobs that you can tweak on your machine learning algorithms. Hyperparameters are usually decided by training the model with different combinations of the parameters and deciding which ones work best by testing them. Ultimately, the combination that provides the best model would be our final hyperparameters. Setting hyperparameters can have a significant influence on the performance of the trained models.

On the other hand, cross-validation is often used in conjunction with hyperparameter tuning. Cross-validation (also know as rotation estimation) is a model validation technique for assessing the quality of the statistical analysis and results. Cross-validation helps to describe...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY