Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Machine Learning for Finance
  • Table Of Contents Toc
  • Feedback & Rating feedback
Machine Learning for Finance

Machine Learning for Finance

By : James Le , Jannes Klaas
4.1 (59)
close
close
Machine Learning for Finance

Machine Learning for Finance

4.1 (59)
By: James Le , Jannes Klaas

Overview of this book

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.
Table of Contents (15 chapters)
close
close
Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
Index

Median forecasting


A good sanity check and an often underrated forecasting tool is medians. A median is a value separating the higher half of a distribution from the lower half; it sits exactly in the middle of the distribution. Medians have the advantage of removing noise, coupled with the fact that they are less susceptible to outliers than means, and the way they capture the midpoint of distribution means that they are also easy to compute.

To make a forecast, we compute the median over a look-back window in our training data. In this case, we use a window size of 50, but you could experiment with other values. The next step is to select the last 50 values from our X values and compute the median.

Take a minute to note that in the NumPy median function, we have to set keepdims=True. This ensures that we keep a two-dimensional matrix rather than a flat array, which is important when computing the error. So, to make a forecast, we need to run the following code:

lookback = 50

lb_data = X_train...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY