Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Machine Learning for Finance
  • Toc
  • feedback
Machine Learning for Finance

Machine Learning for Finance

By : James Le , Jannes Klaas
4.1 (59)
close
Machine Learning for Finance

Machine Learning for Finance

4.1 (59)
By: James Le , Jannes Klaas

Overview of this book

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas’ experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and probabilistic programming.
Table of Contents (15 chapters)
close
Machine Learning for Finance
Contributors
Preface
Other Books You May Enjoy
Index

A note on backtesting


The peculiarities of choosing training and testing sets are especially important in both systematic investing and algorithmic trading. The main way to test trading algorithms is a process called backtesting.

Backtesting means we train the algorithm on data from a certain time period and then test its performance on older data. For example, we could train on data from a date range of 2015 to 2018 and then test on data from 1990 to 2015. By doing this, not only is the model's accuracy tested, but the backtested algorithm executes virtual trades so its profitability can be evaluated. Backtesting is done because there is plenty of past data available.

With all that being said, backtesting does suffer from several biases. Let's take a look at four of the most important biases that we need to be aware of:

  • Look-ahead bias: This is introduced if future data is accidentally included at a point in the simulation where that data would not have been available yet. This can be caused...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete