Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Artificial Intelligence with Python Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
Artificial Intelligence with Python Cookbook

Artificial Intelligence with Python Cookbook

By : Kumar, Ben Auffarth
4.9 (7)
close
close
Artificial Intelligence with Python Cookbook

Artificial Intelligence with Python Cookbook

4.9 (7)
By: Kumar, Ben Auffarth

Overview of this book

Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production.
Table of Contents (13 chapters)
close
close

Setting up a Jupyter environment

As you are aware, since you've acquired this book, Python is the dominant programming language in AI. It has the richest ecosystem of all programming languages, including many implementations of state-of-the-art algorithms that make using them often a matter of simply importing and setting a few selected parameters. It should go without saying that we will go beyond the basic usage in many cases and we will talk about a lot of the underlying ideas and technologies as we go through the recipes.

We can't emphasize enough the importance of being able to quickly prototype ideas and see how well they work as part of a solution. This is often the main part of AI or data science work. A read-eval-print loop (REPL) is essential for quick iteration when turning an idea into a prototype, and you want functionality such as edit history, graphing, and more. This explains why Jupyter Notebook (where Jupyter is short for Julia, Python, R) is so central...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY