Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hands-On Deep Learning Architectures with Python
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python

By : Yuxi (Hayden) Liu, Mehta
4.5 (2)
close
close
Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python

4.5 (2)
By: Yuxi (Hayden) Liu, Mehta

Overview of this book

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.
Table of Contents (15 chapters)
close
close
Free Chapter
1
Section 1: The Elements of Deep Learning
5
Section 2: Convolutional Neural Networks
8
Section 3: Sequence Modeling
10
Section 4: Generative Adversarial Networks (GANs)
12
Section 5: The Future of Deep Learning and Advanced Artificial Intelligence

Summary

We just accomplished an important part of our learning journey regarding DL architectures—RNNs! In this chapter, we got more familiar with RNNs and their variants. We started with what RNNs are, the evolution paths of RNNs, and how they became the state-of-the-art solutions to sequential modeling. We also explored four RNN architectures categorized by the forms of input and output data, along with industrial examples.

We followed by discussing a variety of architectures categorized by the recurrent layer, including vanilla RNNs, LSTM, GRU, and bidirectional RNNs. First, we applied the vanilla architecture to write our own War and Peace, albeit a bit nonsensical. We produced a better version by using LSTM architecture RNNs. Another memory-boosted architecture, GRU, was employed in stock price prediction.

Finally, beyond past information, we introduced the bidirectional...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY