Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Hands-On Deep Learning Architectures with Python
  • Toc
  • feedback
Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python

By : Yuxi (Hayden) Liu, Mehta
4.5 (2)
close
Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python

4.5 (2)
By: Yuxi (Hayden) Liu, Mehta

Overview of this book

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems. Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more—all with practical implementations. By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.
Table of Contents (15 chapters)
close
Free Chapter
1
Section 1: The Elements of Deep Learning
5
Section 2: Convolutional Neural Networks
8
Section 3: Sequence Modeling
10
Section 4: Generative Adversarial Networks (GANs)
12
Section 5: The Future of Deep Learning and Advanced Artificial Intelligence

Artificial intelligence

Ever since the beginning of the computer era, humans have been trying to mimic the brain into the machine. Researchers have been developing methods that would make machines not only compute but also decide like we humans do. This quest of ours gave birth to artificial intelligence around the 1960s. By definition, artificial intelligence means developing systems that are capable of accomplishing tasks without a human explicitly programming every decision. In 1956, the first program for playing checkers was written by Arthur Samuel. Since then, researchers tried to mimic human intelligence by defining sets of handwritten rules that didn't involve any learning. Artificial intelligence programs, which played games such as chess, were nothing but sets of manually defined moves and strategies. In 1959, Arthur Samuel coined the term machine...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete