Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Go Machine Learning Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
Go Machine Learning Projects

Go Machine Learning Projects

By : Xuanyi Chew
5 (1)
close
close
Go Machine Learning Projects

Go Machine Learning Projects

5 (1)
By: Xuanyi Chew

Overview of this book

Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but also to have its performance measured. The book begins by guiding you through setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis along with decomposition and clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks. Lastly, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project. By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go toolkit, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects.
Table of Contents (12 chapters)
close
close

What this book covers

Chapter 1, How To Solve All Machine Learning Problems, introduces two classes of machine learning: regression and classification. By the end of this chapter, you should feel comfortable with the data structures used to build machine learning programs. Most machine learning algorithms are built based on the data structures introduced here. We are then going to introduce Go machine learning and get you up and running for further projects.

Chapter 2, Linear Regression – House Price Prediction, goes into a regression analysis on a real-life dataset on house pricing. We will start off by building the necessary data structures to perform such analyses, along with initial exploration of the dataset.

Chapter 3, Classification – Spam Email Detection, covers the construction of a classification model in Go. The dataset is the classic spam and ham email dataset in which our goal is to build a model that classifies the emails as spam or ham. Then, we will learn how to write the algorithms themselves, while leveraging external libraries (such as Gonum) for data structure support.

Chapter 4, Decomposing CO2 Trends Using Time Series Analysis, introduces us to the subtleties of time series analysis. Data in time series can often be decomposed for descriptive purposes. This chapter shows us how to perform such decompositions, and how to display them using Gonum's plotting tools as well as gnuplot.

Chapter 5, Clean Up Your Personal Twitter Timeline by Clustering Tweets, covers the clustering of tweets on Twitter. We will be using two different clustering techniques, K-Means and DBSCAN. For this chapter, we're going to rely on a number of skills we built up in Chapter 2, Linear Regression – House Price Prediction. We will also be using the same libraries used in the aforementioned chaper. On top of that, we will also be using the clusters library by Marcin Praski

Chapter 6, Neural Networks – MNIST Handwriting Recognition, opens up the rich world of image recognition to us. Images are difficult, because useful features are nonlinear products of the input features. The aim of this project is to introduce the various methods of handling high-dimensional data; specifically, the use of PCA algorithms in the Gonum library to whiten data.

Chapter 7, Convolutional Neural Networks – MNIST Handwriting Recognition, explains how to use recent advancements in deep learning to perform handwriting recognition, by building a convolutional neural network using Gorgonia tp achieve 99.87% accuracy.

Chapter 8, Basic Facial Detection, explores a basic implementation of facial detection. By the end of this chapter, we will have implemented a usable facial detection system using GoCV and PIGO. This chapter teaches an important lesson in learning to choose the correct algorithm for the job.

Chapter 9, Hot Dog or Not Hot Dog - Using External Services culminates the book by showing how one may integrate external services in machine learning projects, and what to look out for when doing so.

Chapter 10, What Is Next, lists the further avenues for machine learning in Go.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY