Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Go Machine Learning Projects
  • Table Of Contents Toc
  • Feedback & Rating feedback
Go Machine Learning Projects

Go Machine Learning Projects

By : Xuanyi Chew
5 (1)
close
close
Go Machine Learning Projects

Go Machine Learning Projects

5 (1)
By: Xuanyi Chew

Overview of this book

Go is the perfect language for machine learning; it helps to clearly describe complex algorithms, and also helps developers to understand how to run efficient optimized code. This book will teach you how to implement machine learning in Go to make programs that are easy to deploy and code that is not only easy to understand and debug, but also to have its performance measured. The book begins by guiding you through setting up your machine learning environment with Go libraries and capabilities. You will then plunge into regression analysis of a real-life house pricing dataset and build a classification model in Go to classify emails as spam or ham. Using Gonum, Gorgonia, and STL, you will explore time series analysis along with decomposition and clean up your personal Twitter timeline by clustering tweets. In addition to this, you will learn how to recognize handwriting using neural networks and convolutional neural networks. Lastly, you'll learn how to choose the most appropriate machine learning algorithms to use for your projects with the help of a facial detection project. By the end of this book, you will have developed a solid machine learning mindset, a strong hold on the powerful Go toolkit, and a sound understanding of the practical implementations of machine learning algorithms in real-world projects.
Table of Contents (12 chapters)
close
close

Data massage

When we tested that the data structure made sense, we printed the FullText field. We wish to cluster based on the content of the tweet. What matters to us is that content. This can be found in the FullText field of the struct. Later on in the chapter, we will see how we may use the metadata of the tweets, such as location, to help cluster the tweets better.

As mentioned in the previous sections, each individual tweet needs to be represented as a coordinate in some higher-dimensional space. Thus, our goal is to take all the tweets in a timeline and preprocess them in such a way that we can get this output table:

| Tweet ID | twitter | test | right | wrong |
|:--------:|:------:|:----:|:----:|:---:|
| 1 | 0 | 1 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 |
| 3 | 0 | 0 | 1 | 1 |

Each row in the table represents a tweet, indexed by the tweet ID. The columns that follow are words that...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY