Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Artificial Intelligence for Robotics
  • Table Of Contents Toc
  • Feedback & Rating feedback
Artificial Intelligence for Robotics

Artificial Intelligence for Robotics

By : Francis X. Govers III
4.4 (5)
close
close
Artificial Intelligence for Robotics

Artificial Intelligence for Robotics

4.4 (5)
By: Francis X. Govers III

Overview of this book

Artificial Intelligence for Robotics starts with an introduction to Robot Operating Systems (ROS), Python, robotic fundamentals, and the software and tools that are required to start out with robotics. You will learn robotics concepts that will be useful for making decisions, along with basic navigation skills. As you make your way through the chapters, you will learn about object recognition and genetic algorithms, which will teach your robot to identify and pick up an irregular object. With plenty of use cases throughout, you will explore natural language processing (NLP) and machine learning techniques to further enhance your robot. In the concluding chapters, you will learn about path planning and goal-oriented programming, which will help your robot prioritize tasks. By the end of this book, you will have learned to give your robot an artificial personality using simulated intelligence.
Table of Contents (13 chapters)
close
close

Questions

  1. Regarding SLAM, what sensor is most commonly used to create the data that SLAM needs to make a map?
  2. Why does SLAM work better with wheel odometer data available?
  3. In the Floor Finder algorithm, what does the Gaussian blur function do to improve the results?
  4. The final step in the floor finder is to trace upward from the robot position to the first red pixel. In what other way can this step be accomplished?
  5. Why did we cut the image in half horizontally before doing our neural network processing?
  6. What advantages does using the neural network approach provide that a technique such as SLAM does not?
  7. If we used just a random driving function instead of the neural network, what new program or function would we have to add to the robot to achieve the same results?
  8. How did we end up avoiding the stairs in the approach presented in the chapter? Do you feel this is adequate? Would...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY