Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Deep Learning with TensorFlow
  • Toc
  • feedback
Deep Learning with TensorFlow

Deep Learning with TensorFlow

By : Zaccone, Karim
3 (4)
close
Deep Learning with TensorFlow

Deep Learning with TensorFlow

3 (4)
By: Zaccone, Karim

Overview of this book

Deep learning is a branch of machine learning algorithms based on learning multiple levels of abstraction. Neural networks, which are at the core of deep learning, are being used in predictive analytics, computer vision, natural language processing, time series forecasting, and to perform a myriad of other complex tasks. This book is conceived for developers, data analysts, machine learning practitioners and deep learning enthusiasts who want to build powerful, robust, and accurate predictive models with the power of TensorFlow, combined with other open source Python libraries. Throughout the book, you’ll learn how to develop deep learning applications for machine learning systems using Feedforward Neural Networks, Convolutional Neural Networks, Recurrent Neural Networks, Autoencoders, and Factorization Machines. Discover how to attain deep learning programming on GPU in a distributed way. You'll come away with an in-depth knowledge of machine learning techniques and the skills to apply them to real-world projects.
Table of Contents (13 chapters)
close
12
Index

Movie recommendation using collaborative filtering


In this section, we will see how to utilize collaborative filtering to develop a recommendation engine. However, before that let's discuss the utility matrix of preferences.

The utility matrix

In a collaborative filtering-based recommendation system, there are dimensions of entities: users and items (items refer to products, such as movies, games, and songs). As a user, you might have preferences for certain items. Therefore, these preferences must be extracted out of the data about items, users, or ratings. This data is often represented as a utility matrix, such as a user-item pair. This type of value can represent what is known about the degree of preference that the user has for a particular item.

The entry in the matrix can come from an ordered set. For example, integers 1-5 can be used to represent the number of stars that the user gave when rating items. We have already mentioned that users might not rate items very often, so most entries...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete