Streaming is always an important pillar for large-scale organizations. More and more organizations rely on a massive data pool, and they have a need for faster actionable insights. You should understand the long-lasting profitability impact of timely data and appropriate actions based on such timely insights into data. In addition to in-time activities, streaming opens up channels to capture massive, unbounded data from various business groups throughout an organization. This section focuses on the factors that should be taken into account when designing a streaming application. The end results of such designs are driven by the business objectives of the organization.

Mastering Hadoop 3
By :

Mastering Hadoop 3
By:
Overview of this book
Apache Hadoop is one of the most popular big data solutions for distributed storage and for processing large chunks of data. With Hadoop 3, Apache promises to provide a high-performance, more fault-tolerant, and highly efficient big data processing platform, with a focus on improved scalability and increased efficiency.
With this guide, you’ll understand advanced concepts of the Hadoop ecosystem tool. You’ll learn how Hadoop works internally, study advanced concepts of different ecosystem tools, discover solutions to real-world use cases, and understand how to secure your cluster. It will then walk you through HDFS, YARN, MapReduce, and Hadoop 3 concepts. You’ll be able to address common challenges like using Kafka efficiently, designing low latency, reliable message delivery Kafka systems, and handling high data volumes. As you advance, you’ll discover how to address major challenges when building an enterprise-grade messaging system, and how to use different stream processing systems along with Kafka to fulfil your enterprise goals.
By the end of this book, you’ll have a complete understanding of how components in the Hadoop ecosystem are effectively integrated to implement a fast and reliable data pipeline, and you’ll be equipped to tackle a range of real-world problems in data pipelines.
Table of Contents (21 chapters)
Preface
Journey to Hadoop 3
Deep Dive into the Hadoop Distributed File System
YARN Resource Management in Hadoop
Internals of MapReduce
Section 2: Hadoop Ecosystem
SQL on Hadoop
Real-Time Processing Engines
Widely Used Hadoop Ecosystem Components
Section 3: Hadoop in the Real World
Designing Applications in Hadoop
Real-Time Stream Processing in Hadoop
Machine Learning in Hadoop
Hadoop in the Cloud
Hadoop Cluster Profiling
Section 4: Securing Hadoop
Who Can Do What in Hadoop
Network and Data Security
Monitoring Hadoop
Other Books You May Enjoy
How would like to rate this book
Customer Reviews