Feedback from our readers is always welcome. Let us know what you think about this book-what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of. To send us general feedback, simply email [email protected], and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.
-
Book Overview & Buying
-
Table Of Contents
-
Feedback & Rating

Statistics for Data Science
By :

Statistics for Data Science
By:
Overview of this book
Data science is an ever-evolving field, which is growing in popularity at an exponential rate. Data science includes techniques and theories extracted from the fields of statistics; computer science, and, most importantly, machine learning, databases, data visualization, and so on.
This book takes you through an entire journey of statistics, from knowing very little to becoming comfortable in using various statistical methods for data science tasks. It starts off with simple statistics and then move on to statistical methods that are used in data science algorithms. The R programs for statistical computation are clearly explained along with logic. You will come across various mathematical concepts, such as variance, standard deviation, probability, matrix calculations, and more. You will learn only what is required to implement statistics in data science tasks such as data cleaning, mining, and analysis. You will learn the statistical techniques required to perform tasks such as linear regression, regularization, model assessment, boosting, SVMs, and working with neural networks.
By the end of the book, you will be comfortable with performing various statistical computations for data science programmatically.
Table of Contents (13 chapters)
Preface
Transitioning from Data Developer to Data Scientist
Declaring the Objectives
A Developer's Approach to Data Cleaning
Data Mining and the Database Developer
Statistical Analysis for the Database Developer
Database Progression to Database Regression
Regularization for Database Improvement
Database Development and Assessment
Databases and Neural Networks
Boosting your Database
Database Classification using Support Vector Machines
Database Structures and Machine Learning
Customer Reviews