Feedback from our readers is always welcome. Let us know what you thought about this book-what you liked or disliked. Reader feedback is important for us as it helps us to develop titles that you will really get the most out of. To send us general feedback, simply email [email protected], and mention the book's title in the subject of your message. If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Apache Spark 2.x for Java Developers
By :

Apache Spark 2.x for Java Developers
By:
Overview of this book
Apache Spark is the buzzword in the big data industry right now, especially with the increasing need for real-time streaming and data processing. While Spark is built on Scala, the Spark Java API exposes all the Spark features available in the Scala version for Java developers. This book will show you how you can implement various functionalities of the Apache Spark framework in Java, without stepping out of your comfort zone.
The book starts with an introduction to the Apache Spark 2.x ecosystem, followed by explaining how to install and configure Spark, and refreshes the Java concepts that will be useful to you when consuming Apache Spark's APIs. You will explore RDD and its associated common Action and Transformation Java APIs, set up a production-like clustered environment, and work with Spark SQL. Moving on, you will perform near-real-time processing with Spark streaming, Machine Learning analytics with Spark MLlib, and graph processing with GraphX, all using various Java packages.
By the end of the book, you will have a solid foundation in implementing components in the Spark framework in Java to build fast, real-time applications.
Table of Contents (12 chapters)
Preface
Introduction to Spark
Revisiting Java
Let Us Spark
Understanding the Spark Programming Model
Working with Data and Storage
Spark on Cluster
Spark Programming Model - Advanced
Working with Spark SQL
Near Real-Time Processing with Spark Streaming
Machine Learning Analytics with Spark MLlib
How would like to rate this book
Customer Reviews