Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • OpenCV 3 Computer Vision Application Programming Cookbook
  • Toc
  • feedback
OpenCV 3 Computer Vision Application Programming Cookbook

OpenCV 3 Computer Vision Application Programming Cookbook

By : Robert Laganiere
3.5 (2)
close
OpenCV 3 Computer Vision Application Programming Cookbook

OpenCV 3 Computer Vision Application Programming Cookbook

3.5 (2)
By: Robert Laganiere

Overview of this book

Making your applications see has never been easier with OpenCV. With it, you can teach your robot how to follow your cat, write a program to correctly identify the members of One Direction, or even help you find the right colors for your redecoration. OpenCV 3 Computer Vision Application Programming Cookbook Third Edition provides a complete introduction to the OpenCV library and explains how to build your first computer vision program. You will be presented with a variety of computer vision algorithms and exposed to important concepts in image and video analysis that will enable you to build your own computer vision applications. This book helps you to get started with the library, and shows you how to install and deploy the OpenCV library to write effective computer vision applications following good programming practices. You will learn how to read and write images and manipulate their pixels. Different techniques for image enhancement and shape analysis will be presented. You will learn how to detect specific image features such as lines, circles or corners. You will be introduced to the concepts of mathematical morphology and image filtering. The most recent methods for image matching and object recognition are described, and you’ll discover how to process video from files or cameras, as well as how to detect and track moving objects. Techniques to achieve camera calibration and perform multiple-view analysis will also be explained. Finally, you’ll also get acquainted with recent approaches in machine learning and object classification.
Table of Contents (15 chapters)
close

Matching images using random sample consensus

When two cameras observe the same scene, they see the same elements but under different viewpoints. We have already studied the feature point matching problem in the previous chapter. In this recipe, we come back to this problem, and we will learn how to exploit the epipolar constraint introduced in the previous recipe to match image features more reliably.

The principle that we will follow is simple: when we match feature points between two images, we only accept those matches that fall on corresponding epipolar lines. However, to be able to check this condition, the fundamental matrix must be known, but we need good matches to estimate this matrix. This seems to be a chicken-and-egg problem. However, in this recipe, we propose a solution in which the fundamental matrix and a set of good matches will be jointly computed.

How to do it...

The objective is to be able to compute a fundamental matrix and a set of good matches between two views. To...

bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete