Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • IPython Interactive Computing and Visualization Cookbook
  • Toc
  • feedback
IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook

By : Cyrille Rossant
4.4 (7)
close
IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook

4.4 (7)
By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (17 chapters)
close
16
Index

Accelerating pure Python code with Numba and Just-In-Time compilation


Numba (http://numba.pydata.org) is a package created by Anaconda, Inc (http://www.anaconda.com). Numba takes pure Python code and translates it automatically (JIT) into optimized machine code. In practice, this means that we can write a non-vectorized function in pure Python, using for loops, and have this function vectorized automatically by using a single decorator. Performance speedups when compared to pure Python code can reach several orders of magnitude and may even outmatch manually-vectorized NumPy code.

In this section, we will show you how to accelerate pure Python code generating a Mandelbrot fractal.

Getting ready

Numba should already be installed in Anaconda, but you can also install it manually with conda install numba.

How to do it...

  1. Let's import NumPy and define a few variables:

    >>> import numpy as np
        import matplotlib.pyplot as plt
        %matplotlib inline
    >>> size = 400
        iterations...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete