Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying IPython Interactive Computing and Visualization Cookbook
  • Table Of Contents Toc
  • Feedback & Rating feedback
IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook

By : Cyrille Rossant
4.4 (7)
close
close
IPython Interactive Computing and Visualization Cookbook

IPython Interactive Computing and Visualization Cookbook

4.4 (7)
By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (17 chapters)
close
close
16
Index

Introduction

Stochastic dynamical systems are dynamical systems subjected to the effect of noise. The randomness brought by the noise takes into account the variability observed in real-world phenomena. For example, the evolution of a share price typically exhibits long-term behaviors along with faster, smaller-amplitude oscillations, reflecting day-to-day or hour-to-hour variations.

Applications of stochastic systems to data science include methods for statistical inference (such as Markov chain Monte Carlo) and stochastic modeling for time series or geospatial data.

Stochastic discrete-time systems include discrete-time Markov chains. The Markov property means that the state of a system at time Introduction only depends on its state at time Introduction. Stochastic cellular automata, which are stochastic extensions of cellular automata, are particular Markov chains.

As far as continuous-time systems are concerned, Ordinary Differential Equations with noise yield Stochastic Differential Equations (SDEs). Partial...

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY