Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Java for Data Science
  • Toc
  • feedback
Java for Data Science

Java for Data Science

By : Richard M. Reese, Reese
close
Java for Data Science

Java for Data Science

By: Richard M. Reese, Reese

Overview of this book

para 1: Get the lowdown on Java and explore big data analytics with Java for Data Science. Packed with examples and data science principles, this book uncovers the techniques & Java tools supporting data science and machine learning. Para 2: The stability and power of Java combines with key data science concepts for effective exploration of data. By working with Java APIs and techniques, this data science book allows you to build applications and use analysis techniques centred on machine learning. Para 3: Java for Data Science gives you the understanding you need to examine the techniques and Java tools supporting big data analytics. These Java-based approaches allow you to tackle data mining and statistical analysis in detail. Deep learning and Java data mining are also featured, so you can explore and analyse data effectively, and build intelligent applications using machine learning. para 4: What?s Inside ? Understand data science principles with Java support ? Discover machine learning and deep learning essentials ? Explore data science problems with Java-based solutions
Table of Contents (13 chapters)
close

Summary

In this chapter, we introduced a number of NLP tasks and showed how they are supported. In particular, we used OpenNLP and DL4J to illustrate how they are performed. While there are a number of other libraries available, these examples provide a good introduction to the techniques.

We started with an introduction to basic NLP terms and concepts such as named entity recognition, POS, and relationships between elements of a sentence. Named entity recognition is concerned with finding and labeling the parts of a sentence such as people, locations, and things. POS associates labels with elements of a sentence. For example, NN refers to a noun and VB to a verb.

We then included a discussion of the Word2Vec and Doc2Vec neural networks. These were used to classify text, both with labels and by similarity with other words. We demonstrated the use of DL4J resources to create feature vectors for document association with labels.

While the identification of these associations is interesting,...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete