Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Java for Data Science
  • Toc
  • feedback
Java for Data Science

Java for Data Science

By : Richard M. Reese, Reese
close
Java for Data Science

Java for Data Science

By: Richard M. Reese, Reese

Overview of this book

para 1: Get the lowdown on Java and explore big data analytics with Java for Data Science. Packed with examples and data science principles, this book uncovers the techniques & Java tools supporting data science and machine learning. Para 2: The stability and power of Java combines with key data science concepts for effective exploration of data. By working with Java APIs and techniques, this data science book allows you to build applications and use analysis techniques centred on machine learning. Para 3: Java for Data Science gives you the understanding you need to examine the techniques and Java tools supporting big data analytics. These Java-based approaches allow you to tackle data mining and statistical analysis in detail. Deep learning and Java data mining are also featured, so you can explore and analyse data effectively, and build intelligent applications using machine learning. para 4: What?s Inside ? Understand data science principles with Java support ? Discover machine learning and deep learning essentials ? Explore data science problems with Java-based solutions
Table of Contents (13 chapters)
close

Summary

The intent of this chapter was to illustrate how various data science tasks can be integrated into an application. We chose an application that processes tweets because it is a popular social medium and allows us to apply many of the techniques discussed in earlier chapters.

A simple console-based interface was used to avoid cluttering the discussion with specific but possibly irrelevant GUI details. The application prompted the user for a Twitter topic, a sub-topic, and the number of tweets to process. The analysis consisted of determining the sentiments of the tweets, with simple statistics regarding the positive or negative nature of the tweets.

The first step in the process was to build a sentiment model. We used LingPipe classes to build a model and perform the analysis. A Java 8 stream was used and supported a fluent style of programming where the individual processing steps could be easily added and removed.

Once the stream was created, the JSON raw text was processed and used...

bookmark search playlist download font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete