Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Hbase Essentials
  • Table Of Contents Toc
  • Feedback & Rating feedback
Hbase Essentials

Hbase Essentials

By : Garg
3.5 (2)
close
close
Hbase Essentials

Hbase Essentials

3.5 (2)
By: Garg

Overview of this book

This book is intended for developers and Big Data engineers who want to know all about HBase at a hands-on level. For in-depth understanding, it would be helpful to have a bit of familiarity with HDFS and MapReduce programming concepts with no prior experience with HBase or similar technologies. This book is also for Big Data enthusiasts and database developers who have worked with other NoSQL databases and now want to explore HBase as another futuristic, scalable database solution in the Big Data space.
Table of Contents (9 chapters)
close
close

The world of Big Data

Since the last decade, the amount of data being created is more than 20 terabytes per second and this size is only increasing. Not only volume and velocity but this data is also of a different variety, that is, structured and semi structured in nature, which means that data might be coming from blog posts, tweets, social network interactions, photos, videos, continuously generated log messages about what users are doing, and so on. Hence, Big Data is a combination of transactional data and interactive data. This large set of data is further used by organizations for decision making. Storing, analyzing, and summarizing these large datasets efficiently and cost effectively have become among the biggest challenges for these organizations.

In 2003, Google published a paper on the scalable distributed filesystem titled Google File System (GFS), which uses a cluster of commodity hardware to store huge amounts of data and ensure high availability by using the replication of data between nodes. Later, Google published an additional paper on processing large, distributed datasets using MapReduce (MR).

For processing Big Data, platforms such as Hadoop, which inherits the basics from both GFS and MR, were developed and contributed to the community. A Hadoop-based platform is able to store and process continuously growing data in terabytes or petabytes.

Note

The Apache Hadoop software library is a framework that allows the distributed processing of large datasets across clusters of computers.

However, Hadoop is designed to process data in the batch mode and the ability to access data randomly and near real time is completely missing. In Hadoop, processing smaller files has a larger overhead compared to big files and thus is a bad choice for low latency queries.

Later, a database solution called NoSQL evolved with multiple flavors, such as a key-value store, document-based store, column-based store, and graph-based store. NoSQL databases are suitable for different business requirements. Not only do these different flavors address scalability and availability but also take care of highly efficient read/write with data growing infinitely or, in short, Big Data.

Note

The NoSQL database provides a fail-safe mechanism for the storage and retrieval of data that is modeled in it, somewhat different from the tabular relations used in many relational databases.

Create a Note

Modal Close icon
You need to login to use this feature.
notes
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Delete Note

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete

Edit Note

Modal Close icon
Write a note (max 255 characters)
Cancel
Update Note

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY