Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Mastering SciPy
  • Toc
  • feedback
Mastering SciPy

Mastering SciPy

By : Blanco-Silva, Francisco Javier B Silva
3.5 (2)
close
Mastering SciPy

Mastering SciPy

3.5 (2)
By: Blanco-Silva, Francisco Javier B Silva

Overview of this book

The SciPy stack is a collection of open source libraries of the powerful scripting language Python, together with its interactive shells. This environment offers a cutting-edge platform for numerical computation, programming, visualization and publishing, and is used by some of the world’s leading mathematicians, scientists, and engineers. It works on any operating system that supports Python and is very easy to install, and completely free of charge! It can effectively transform into a data-processing and system-prototyping environment, directly rivalling MATLAB and Octave. This book goes beyond a mere description of the different built-in functions coded in the libraries from the SciPy stack. It presents you with a solid mathematical and computational background to help you identify the right tools for each problem in scientific computing and visualization. You will gain an insight into the best practices with numerical methods depending on the amount or type of data, properties of the mathematical tools employed, or computer architecture, among other factors. The book kicks off with a concise exploration of the basics of numerical linear algebra and graph theory for the treatment of problems that handle large data sets or matrices. In the subsequent chapters, you will delve into the depths of algorithms in symbolic algebra and numerical analysis to address modeling/simulation of various real-world problems with functions (through interpolation, approximation, or creation of systems of differential equations), and extract their representing features (zeros, extrema, integration or differentiation). Lastly, you will move on to advanced concepts of data analysis, image/signal processing, and computational geometry.
Table of Contents (11 chapters)
close
10
Index

Preface

The idea of writing Mastering SciPy arose but 2 months after publishing Learning SciPy for Numerical and Scientific Computing. During a presentation of that book at the University of South Carolina, I had the privilege of speaking about its contents to a heterogeneous audience of engineers, scientists, and students, each of them with very different research problems and their own set of preferred computational resources. In the weeks following that presentation, I helped a few professionals transition to a SciPy-based environment. During those sessions, we discussed how SciPy is, under the hood, the same set of algorithms (and often the same code) that they were already using. We experimented with some of their examples and systematically obtained comparable performance. We immediately saw the obvious benefit of a common environment based upon a robust scripting language. Through the SciPy stack, we discovered an easier way to communicate and share our results with colleagues, students, or employers. In all cases, the switch to the SciPy stack provided a faster setup for our groups, where newcomers could get up to speed quickly.

Everybody involved in the process went from novice to advanced user, and finally mastered the SciPy stack in no time. In most cases, the scientific background of the individuals with whom I worked made the transition seamless. The process toward mastering materialized when they were able to contrast the theory behind their research with the solutions offered. The aha moment always happened while replicating some of their experiments with a careful guidance and explanation of the process.

That is precisely the philosophy behind this book. I invite you to participate in similar sessions. Each chapter has been envisioned as a conversation with an individual with certain scientific needs expressed as numerical computations. Together, we discover relevant examples—the different possible ways to solve those problems, the theory behind them, and the pros and cons of each route.

The process of writing followed a similar path to obtain an engaging collection of examples. I entered into conversations with colleagues in several different fields. Each section clearly reflects these exchanges. This was crucial while engaged in the production of the most challenging chapters—the last four. To ensure the same quality throughout the book, always trying to commit to a rigorous set of standards, these chapters took much longer to be completed to satisfaction. Special mentions go to Aaron Dutle at NASA Langley Research Center, who helped shape parts of the chapter on computational geometry, and Parsa Bakhtary, a data analyst at Facebook, who inspired many of the techniques in the chapter on applications of statistical computing to data analysis.

It was an amazing journey that helped deepen my understanding of numerical methods, broadened my perspective in problem solving, and strengthened my scientific maturity. It is my wish that it has the same impact on you.

Unlock full access

Continue reading for free

A Packt free trial gives you instant online access to our library of over 7000 practical eBooks and videos, constantly updated with the latest in tech
bookmark search playlist font-size

Change the font size

margin-width

Change margin width

day-mode

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Delete Bookmark

Modal Close icon
Are you sure you want to delete it?
Cancel
Yes, Delete